Efferent protection from acoustic injury is mediated via alpha9 nicotinic acetylcholine receptors on outer hair cells.
نویسندگان
چکیده
Exposure to intense sound can damage the mechanosensors of the inner ear and their afferent innervation. These neurosensory elements are innervated by a sound-activated feedback pathway, the olivocochlear efferent system. One major component of this system is cholinergic, and known cholinergic effects are mediated by the alpha9/alpha10 nicotinic acetylcholine receptor (nAChR) complex. Here, we show that overexpression of alpha9 nAChR in the outer hair cells of bacterial artificial chromosome transgenic mice significantly reduces acoustic injury from exposures causing either temporary or permanent damage, without changing pre-exposure cochlear sensitivity to low- or moderate-level sound. These data demonstrate that efferent protection is mediated via the alpha9 nAChR in the outer hair cells and provide direct evidence for a protective role, in vivo, of a member of the nAChR family.
منابع مشابه
Overexpression of SK2 channels enhances efferent suppression of cochlear responses without enhancing noise resistance.
Cochlear hair cells express SK2, a small-conductance Ca(2+)-activated K(+) channel thought to act in concert with Ca(2+)-permeable nicotinic acetylcholine receptors (nAChRs) alpha9 and alpha10 in mediating suppressive effects of the olivocochlear efferent innervation. To probe the in vivo role of SK2 channels in hearing, we examined gene expression, cochlear function, efferent suppression, and ...
متن کاملThe alpha10 nicotinic acetylcholine receptor subunit is required for normal synaptic function and integrity of the olivocochlear system.
Although homomeric channels assembled from the alpha9 nicotinic acetylcholine receptor (nAChR) subunit are functional in vitro, electrophysiological, anatomical, and molecular data suggest that native cholinergic olivocochlear function is mediated via heteromeric nAChRs composed of both alpha9 and alpha10 subunits. To gain insight into alpha10 subunit function in vivo, we examined olivo cochlea...
متن کاملAcetylcholine-evoked calcium increases in Deiters' cells of the guinea pig cochlea suggest alpha9-like receptors.
The medial efferent system innervates outer hair cells in the organ of Corti. Neurotransmission at this synapse is mediated by acetylcholine (ACh) acting on nicotinic ACh receptors containing the alpha9 subunit. In addition to the sensory cells, the supporting cells of the mammalian cochlea also receive efferent innervation but the neurotransmitter(s) at these synapses are not known. We show sl...
متن کاملBehavioral investigation of some possible effects of the central olivocochlear pathways in transgenic mice.
This study investigated the auditory behaviors of transgenic mice with deletions of alpha9 nicotinic acetylcholine receptor subunits. In the normal mammalian cochlea, the mechanical properties of outer hair cells are modified by the release of acetylcholine from olivocochlear efferent terminals. Electrophysiological correlates of this efferent feedback have not been demonstrated in alpha9 knock...
متن کاملA Point Mutation in the Hair Cell Nicotinic Cholinergic Receptor Prolongs Cochlear Inhibition and Enhances Noise Protection
The transduction of sound in the auditory periphery, the cochlea, is inhibited by efferent cholinergic neurons projecting from the brainstem and synapsing directly on mechanosensory hair cells. One fundamental question in auditory neuroscience is what role(s) this feedback plays in our ability to hear. In the present study, we have engineered a genetically modified mouse model in which the magn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 24 شماره
صفحات -
تاریخ انتشار 2002